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This article introduces a type of stochastic model, which we call a multiphase stochastic model, for the
particle transport in bubbling fluidized beds, making it possible to take into account the finite velocity of
fluidization bubbles and also extra particle transport due to “gulf streaming.” An extended analysis of experi-
mental results for particle transport in fluidized beds with gulf streaming is given, and results from the model
are compared with the experimental results, showing that the model accounts for the effects seen.

DOI: 10.1103/PhysRevE.77.031306 PACS number�s�: 83.80.Fg, 02.50.Ey, 02.50.Ga, 47.61.Jd

I. INTRODUCTION

Fluidized beds are very widely used in the processing
industry, and a voluminous scientific and technical literature
spanning journals with the scopes of process technology, ap-
plied physics and applied mathematics is dedicated to the
study and design of fluidized beds and fluidized bed process-
ing. The issue of the flow of particles in fluidized beds is
interesting to a wider audience of applied physicists inter-
ested in the dynamics of granular matter.

In this article we are interested in the vertical particle
transport in bubbling gas fluidized beds. This transport is
related to the movement of fluidization bubbles through the
bed.

Rowe, Partridge, and Gibilaro �1,2� were the first to pro-
pose that the vertical particle motion in batch fluidized beds
is governed by the following phenomena �please see the left-
hand sketch in Fig. 1�. �1� Transport upward in the wakes of
fluidization bubbles �flow in the “wake phase”� and deposi-
tion on the bed surface. �2� Transport down in the bulk �flow
in the “bulk phase”� to compensate for this �1 and 2 together
are termed “circulation”�. �3� Dispersion due to disturbance
of the bed material by fluidization bubbles.

The fluidization bubbles grow as they rise due to coales-
cence, as indicated in the figure. Even though the total flow
of empty bubble volume remains approximately constant
with height in the bed, the wake fraction grows with bubble
volume, so that there is a nonzero probability of a particle
being caught in a wake everywhere in the bed. We note that
if there is a significant pressure drop over the bed, the
bubbles will also grow due to the gas expansion; this is not
taken into account here, but it would not be difficult to do.

However, if the flow of fluidization bubbles is nonuniform
over the bed cross section, another, and potentially more
powerful, mechanism may cause vertical particle transport in
the bed, namely, that of “gulf streaming.” By gulf streaming
bulk material �interstitial between the bubbles� is also
dragged up with the bubble stream in addition to the material
in the actual wakes. This flow of bulk material can be con-
siderably larger than the wake flow, also causing a consider-
ably faster downward bulk flow in the rest of the bed. Merry
and Davidson �3� and Werther �4� were among the first to
discuss this phenomenon, and it has subsequently been dis-

cussed by a number of other workers. Matsen �5� states that
gulf streaming of solids is unavoidable in industrial-scale
fluidized beds and that this constitutes a powerful axial mix-
ing mechanism that is often absent in small, laboratory-scale
fluidized beds with good gas distribution. Werther states that
even if the gas distribution is perfect at the distributor plate,
regions of high and low bubble activity will still develop
higher in the bed, since the bubbles will have concentrated in
the middle because of coalescence, and this will give rise to
gulf-streaming effects.

Figure 1 illustrates the particle transport processes active
in a bubbling fluidized bed, to the left in one with a uniform
bubble distribution, and to the right in one with localized
high bubble intensity, leading to gulf streaming of particles.
Dehling et al. �6� introduced Markov chain models for the
particle transport in bubbling fluidized beds based on the
above-mentioned transport mechanisms of Rowe, Partridge,
and Gibilaro. These models consisted of a Markov birth-
death chain with an additional jump probability to the top of
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FIG. 1. �Color online� Sketches showing left: a bubbling fluid-
ized bed with upward particle flow in bubble wakes and a compen-
sating down-flow in the bulk and right: a bubbling fluidized bed
with a region of high bubble activity leading to extra flow of par-
ticles due to gulf streaming.
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the bed �i, describing the extra transport upward of particles
caught in the wake of a rising gas bubble. Introducing such a
jump to the top which amounts to admitting infinite velocity
for those rising particles was certainly a model assumption of
which feasibility and impact still had to be examined, al-
though very good results had already been achieved with this
approach.

Recent experiments by Dechsiri et al. �7–9� using a pos-
itron emission tomography camera show a quite fast rise of
particles to the top but nonetheless one with finite velocity
�see Fig. 5 later in this paper�. A fast rise explains the quality
of results of the model with jumps. However, a finite rise
velocity should be included in models dealing with these
kind of processes. Unfortunately a simple extension of the
existing model is not possible since the information whether
a particle is drifting and diffusing downward with some ve-
locity, or moving upward with some other velocity—either in
the wake of a rising gas bubble or in the upward stream
caused by any “gulf streaming” taking place—is not de-
scribed by the particle’s position in the state space of De-
hling et al., which was simply the particle’s location in the
reactor. Thus the process loses its Markovian character.

In this paper we show how to construct a so-called mul-
tiphase Markov process capturing this additional feature
while still giving easy access to the parameter of interest,
namely, the spatial position of the particle. In this process a
particle may, in addition to occupying any of the spatial cells
into which the reactor is partitioned, be in one of two or
more “phases.” This is a general concept that can be used for
a wide variety of applications, e.g., to model different chemi-
cal phases or different sizes in population balance modeling
�PBM�. The model will be developed so that it can account
for the transport of material in the wakes of fluidization
bubbles, gulf streaming, and exchange of material between
the wake, gulf streaming, and bulk phases. The model is
validated by comparing its predictions with empirical data.

Finally we will summarize a more general approach to the
modeling of multiphase systems. The formulation of a sto-
chastic model for multiphase systems presented here signifi-
cantly increases the range of systems and processes that can
be modeled with a Markovian model.

We note at this point that Too et al. �10� have published a
stochastic model for the gaseous components in a fluidized
chemical reactor, wherein a multiphase approach was used to
describe the constituent molecules’ presence in either the
bubble or the dense phase of the fluidized bed, and its chemi-
cal state �reactant or product form�. We will return to this
when having introduced our own model to highlight similari-
ties and differences with our approach. Kamrin and Bezant
�11� recently introduced a “stochastic flow rule” for granular
flows via diffusing “spots” of fluidization acting as carriers
of plasticity.

Please note that in the fluidization literature, the word
“phase” is normally used to refer to the bulk �or interstitial�,
the bubble and the wake “phases,” as indicated in Fig. 1. In
the context of multiphase stochastic models the word is used
in a wider sense, for example, each chemical state of a par-
ticle or molecule may constitute a separate “phase.”

The organization of this paper is as follows. First we in-
troduce the multiphase stochastic model for particle transport

in fluidized beds. We then show, referring also to an analysis
in Chapter 8 of the monograph of Dehling, Gottschalk, and
Hoffmann �12�, that the results given in Ref. �9� are both
qualitatively and quantitatively consistent with the existence
of gulf streaming, and finally we compare the predictions of
our model with the experimental results given in Refs. �9,8�.

The discussion in this paper is given in a more complete
form in Chapter 8 of Ref. �12�. The monograph of Dehling,
Gottschalk, and Hoffmann �12� discusses stochastic model-
ing in process technology in general, including a variety of
stochastic modeling techniques applied to a range of pro-
cesses.

II. MULTIPHASE MODEL FOR A BUBBLING FLUIDIZED
BED

We begin with the theory, harking back to the single-
phase model of Dehling et al. �6�, and then consider the
model parameters in light of the physical phenomena and
quantification of the parameters by comparison with experi-
mental results.

A. Theory

We consider a bubbling fluidized bed and its stochastic
model using a Markov chain as introduced by Dehling et al.
�6� and shown in Fig. 2. We give a short recap of the Markov
model of Dehling et al.

The bed is discretized in layers numbered from 1 to N and
an absorbing state N+1 representing the exterior. The transi-
tion matrix P consists of probabilities for 2� i�N:

pi,i = �i�1 − �i� = �1 − �i − �i��1 − �i�, pi,i+1 = �i�1

− �i�, pi,i−1 = �i�1 − �i�, pi,1 = �i

and

p1,1 = �1 − �1�, p1,2 = �1, pN+1,N+1 = 1,

at the boundaries. All other elements of the matrix are zero.
The pi,j are the transfer probabilities from cell i to cell j

�
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λi

i

i + 1

i − 1
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1

FIG. 2. Discretized fluidized bed with arrows indicating all pos-
sible transition paths for the particle located in cell i.
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conditional on the particle being in cell i. The object under
examination is the particle’s location at each time step n
�0 denoted by the random variable Xn, which thus can take
on values in �1,2 , . . . ,N+1� �its state space�. �i denotes the
probability that a particle in cell i is caught in the wake of a
fluidization bubble and deposited on top of the bed, in cell 1;
this constitutes a jump to the top of the bed. The position of
the particle at the nth time step is governed by the probability
vector p�n� with elements p�n , i�.

It is true for all time-homogeneous discrete Markov chain
processes that knowing p�n−1�, one can find p�n� from the
recursion formula

p�n, j� = �
i=1

N+1

p�n − 1,i�pij

or in matrix notation

p�n� = p�n − 1�P .

After n time steps, we obtain the formula for the probability
distribution of position of the particle at time n in terms of its
initial probability distribution

p�n� = p�0�Pn, �1�

where p�0� is the initial condition of particle distribution at
time t=0.

1. Beds without gulf streaming

We wish to introduce a second phase with upward move-
ment to replace the jumps, while retaining the Markovian
character of the model. To do this we have to enlarge the
state space to keep track of all the necessary information to
formulate a Markov chain. Thus the transition probabilities
depend on the location of the particle and its present phase.
As phases we distinguish in this example of a bubbling flu-
idized bed the “bulk phase” with ordinary downward drift
with diffusion, as in the model of Dehling et al. �6�, and a
“wake phase” with the fast rise upward in the wake of a gas
bubble. This gives the following state space:

S = �1,2, . . . ,N� � �0,1� � ��N + 1,0�� .

We denote the multiphase system by �Xn�n�0 now acting on S
instead of �1,2 , . . . ,N+1�, i.e., Xn has the form �i ,k��S for
all n�0.

We denote the particle’s spatial location by the first, and
its phase by the second entry of the state space variable. The
entrance is thus in cell �1,0� and the absorbing cell represent-
ing the exit has the label �N+1,0�. The transition probabili-
ties are

p�i,k��i−1,k� = �i
�k�, p�i,k��i+1,k� = �i

�k�, p�i,k��i,k�

= �i
�k�, p�i,k��i,�k−1�� = �i

�k�

and we require that

�N+1
�0� = 1, �i

�k� + �i
�k� + �i

�k� + �i
�k� = 1

for k� �0,1�, 1� i�N.
Summing up, the possible transitions are �1� Staying in

the same cell, i.e., maintaining location and phase, �2� mov-

ing one cell upward, i.e., changing the location but not the
phase, �3� moving one cell downward, i.e., changing the lo-
cation but not the phase, and �4� Changing the phase, i.e.,
maintaining the location but switching the phase.

Phase 0 models the downward flow in the bulk as a drift
with dispersion, and phase 1 the upward drift in the wake of
rising gas bubbles. By setting

�i
�1� = 0

for 1� i�N, the diffusion in this latter phase is minimized.
Dispersion in an upward-flowing phase can be introduced by
giving �i

�1� a value greater than zero. We shall return to this
topic in the following subsection.

The transition between the two phases, representing the
particle entering or leaving the wake of a gas bubble, is
governed by �i

�k�. Setting

�i
�1� = 0

for 2� i�N models that a particle will only leave the
upward-moving �wake� phase at the top of the reactor. Al-
lowing �i

�1� to differ from zero at other axial stations in the
bed, or in all cells, would model loss of particles from the
wake of the rising bubbles. This would be relevant, for in-
stance, in fluidized beds containing mixtures of particles with
different densities or in baffled fluidized bed, where the
baffles retain some of the wake of a rising fluidization bubble
�13,14�. �i

�0� would then similarly have to be nonzero to al-
low for replenishing of the wake material.

This model is shown schematically in Fig. 3. Please note
that in this and the following picture, the volumes of the cells
cannot be taken as representative of physical volumes.

We emphasize that this multiphase model is a Markov
chain with all its advantages, in contrast to a model account-
ing for a finite particle rise, but involving the particle’s spa-
tial location only, which would not be Markovian. Such a
one-phase model can be seen as the projection of the multi-
phase model on its first coordinate entry. The only way to
formulate a Markovian model for the particle transport in
fluidized beds involving only the particle’s spatial position as
state space is to allow instantaneous jumps to the surface,
such as was done by Dehling, Hoffmann, and Stuut �6�.
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FIG. 3. Multiphase model for a fluidized bed with arrows indi-
cating all possible transition paths for the particle located in cell
�i ,0�.
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The present model with two phases is Markovian, while
still allowing a finite particle velocity to the surface. By en-
larging the state space such that it encodes all necessary in-
formation to completely determine the transition probabili-
ties the process becomes a Markov process and is thus
subject to the powerful theory of Markov processes.

Enlarging the state space is thus a fruitful detour to gain
the desired information about the behavior of the examined
system. An additional advantage is that extra information is
obtained, for instance, the process keeps track of when the
particle occupies each phase, i.e., the expected residence
time of the particle in each phase can also be computed.

Only little literature on the subject of multiphase systems,
as understood here, is available. A general and conceptual
approach to modeling complex processes with multiphase
Markov processes has not been presented in the literature.
Such a general approach is introduced at the end of this
paper. Nevertheless, some work has been done before in spe-
cific contexts. The article of Too et al. �10�, in which the
transport and chemical reaction of the gas-phase constituents
in a fluidized bed reactor is modeled, stands out.

Too et al. divided the fluidized bed in a number of well-
mixed compartments according to a fluidized bed reactor
model of Mori and Wen �15� and derived a multiphase sto-
chastic model for the constituent molecules’ spatial distribu-
tion over the compartments, their chemical form and their
presence in either the bubble or the interstitial phases. Our
model for particle flow in the reactor differs from theirs:
although space is discretized also in our model, the reactor is
not divided into compartments according to a model, but the
spatial particle distribution is modeled directly based on the
physical particle transport mechanisms; this is a fundamental
difference. Another difference is that we derive a discrete
stochastic model directly rather than going over a time-
continuous one, as Too et al. did. The multiphase Markov
chain model of Too et al. for the gas-solids fluidized bed
reactor with mixing and a chemical reactions constitutes a
successful use of stochastic modeling particularly with a
multiphase model.

2. Including gulf streaming

The aim of this section is to extend the above model such
that the phenomenon of gulf streaming is captured. Gulf
streaming is, as mentioned, caused by a cross-sectionally
nonuniform bubble flow, inducing an extra upward flow in
one part of the bed and a corresponding downward flow
somewhere else in the bed �see Fig. 1�. A consequence of
gulf streaming is thus that much more material is transported
from the bottom to the top than that transported in bubble
wakes alone, and this gives rise to a correspondingly en-
hanced downward bulk flow.

Gulf streaming is a common effect, especially in large
industrial beds and will often be the dominating axial mixing
mechanism compared to mixing by the flow of wake material
�3–5�. In the section below, when analyzing experimental
results for particle transport in a bed with gulf streaming, we
will find that only about 0.0224 m /s of the total solids up-
flow per unit area of about 0.263 m /s is due to flow in the
actual bubble wakes.

From this point on we consider a closed reactor without
an exit and delete the state �N+1,0� from the state space of
the multiphase model. To incorporate the possible exchange
of wake material and bulk flow we set the parameter that
governs this exchange �i

�k��0. In other words the fraction of
wake material in a rising gas bubble that leaves the gas
bubble and joins the bulk flow at location i is greater than
zero, and, conversely, the wake is replenished from the sur-
rounding bulk.

Including gulf streaming in the model requires that we
enlarge the state space again. We enlarge the state space to

S = �1,2, . . . ,N� � �0,1,2� .

In this, the first entry between 1 and N still encodes the
particle’s location and the second entry encodes its phase,
which may now be either phase 0 with downward bulk flow
with minimal dispersion or phase 1 with upward flow in the
wake of a rising gas bubble with minimal dispersion or phase
2 with upward flow between the bubbles via gulf streaming
with dispersion.

Phase 0 models movement in the part of the reactor with-
out �or with very little� bubble activity, and therefore the
flow there exhibits only minimal dispersion. More dispersion
takes place in phase 2 due to disturbance of the up-going
stream by the fluidization bubbles “carrying” it. The corre-
sponding transition probabilities are now given as

p�i,k��i−1,k� = �i
�k�, p�i,k��i+1,k� = �i

�k�, p�i,k��i,l� = �i
k,l

and we require

�i
�k� + �i

�k� + �
l=0

2

�i
k,l = 1 �2�

for k , l� �0,1 ,2�, 1� i�N. The probability to stay in a
given cell p�i,k��i,k� is thus denoted by �i

k,k.
The possible transitions are the same as in the model in

Sec. II. We picture the situation in Fig. 4.
This completes the formulation of the model for a bub-

bling fluidized bed with gulf streaming. The transition prob-
abilities now have to be assigned to be consistent with the
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FIG. 4. Extended multiphase model for a fluidized bed with the
particle located in cell �i ,1� and arrows indicating some possible
transition paths.
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physical processes. The parameters �i
k,l governing the inter-

change between the phases are rather difficult to quantify
from experimental evidence.

B. Relating the model parameters to the physical phenomena

Following Dehling et al. �6�, we describe the particle
transport in each of the phases by a velocity ṽ in m /s de-
scribing the flow of the particles in the phase and a �Fickian�
dispersion coefficient D̃ describing the dispersion of the par-
ticles due to the disturbance created by fluidization bubbles.
This equals half of the mean squared particle displacement
per second.

The physical velocities and dispersions have to be con-
verted to dimensionless ones. For given spatial and temporal
discretizations 	 �the height of a spatial cell in m� and 
 �the
length of a time step in s� the conversion formulas are

v
	



= ṽ�in m/s�, D

	2



= D̃�in m2/s� , �3�

where v and D are the dimensionless velocity and dispersion

coefficients and ṽ and D̃ their physical equivalents. This
yields a mean displacement of

�	 � �i
�k� − 	 � �i

�k��
1



= ��i

�k� − �i
�k��

	




and a mean squared displacement of

�	2 � �i
�k� + 	2 � �i

�k��
1



= ��i

�k� + �i
�k��

	2




for a given cell �i ,k�.
Dispersion enters into the model by setting the mean

squared displacement equal to two times the dispersion co-
efficient. This is a reasonable simplification since the physi-
cal dispersion, usually seen as the variance, which is given
by mean displacement squared subtracted from mean
squared displacement, is approximated by its dominating
term: the mean squared displacement. A corollary is that true
plug flow can only be modeled in one way, namely, by set-
ting the corresponding transition probability � or � equal to 1
and choosing the time and space discretization such that
	 /
= ṽ s /m. We are not free to choose our time and space
discretization in this way here, but can only minimize dis-
persion in the phases where we consider that negligible dis-
persion takes place.

Thus the dimensionless velocity �or mean displacement
per time step� and quadratic displacement at location i in the
kth phase become

vi = �i
�k� − �i

�k�, 2Di = �i
�k� + �i

�k�. �4�

We consider the transition probabilities within each phase
first and those between the phases thereafter.

Bulk flow. In the bulk flow we need to minimize disper-
sion and ensure a downward flow. Setting the flow parameter
�i

�0� to be zero allows no upward flow in the bulk and mini-
mizes dispersion.

Wake flow. Analogous to the bulk flow, the wake flow has
minimal dispersion and there is no downward movement.
Thus the wake flow parameter �i

�1� is set to zero.
Gulf streaming upward. Upward gulf streaming exhibits

dispersion, since this is the region through which most of the
bubbles flow. Thus we impose that �i

�2�=Di+
1
2vi and �i

�2�

=Di−
1
2vi to generate a dispersion with dimensionless mean

squared displacement of 2Di and a dimensionless velocity of
vi, conditioned on the particle remaining in the phase, at
location i.

Between the phases the following constraint is made.
Flow between the gulf streaming phase and all other phases
almost only takes place in the upper and lower regions of the
reactor. Thus the parameters �i

k,l have to be very small if k
=2 or l=2 and i� �i0+1 , . . . , i1−1� for some 1� i0� i1�N.
Then �1,2 , . . . , i0� constitutes the upper and �i1 , . . . ,N� the
lower part of the reactor where most transitions involving the
gulf streaming phase take place. No other restrictions on the
transition probabilities �i

k,l are made. Table I gives an over-
view of the constraints above.

If the particles in the reactor are incompressible, which is
the same as saying that, on average, the void fraction in all of
the spatial cells remains constant in time, no mass can accu-
mulate in any given cell. Then the mass balance equation

�
i=1;k��0,1,2�

N

p�i,k�,�j,l� = � j+1
�l� + � j−1

�l� + �
k=0

2

� j
k,l = 1 �5�

must be satisfied for all �j , l�� �1, . . . ,N�� �0,1 ,2�. This
completes our adaptation of the multiphase model to a fluid-
ized bed with gulf streaming. In order to quantify the model
parameters, specifically v and D, we will now further ana-
lyze the experimental results for particle motion in a bub-
bling fluidized bed that exhibited gulf streaming, given by
Dechsiri et al. �9�.

C. Experimental results for fluidized beds with gulf streaming

In this section we give a further analysis of results ema-
nating from a positron emission tomography �PET� study of
the motion of a particle in a bubbling fluidized bed that ex-
hibited gulf streaming. The entire PET study is reported in

TABLE I. Overview of constraints on transition probabilities

up/down Transition to wake/bulk �l� �0,1�� Transition to gulf streaming

Bulk flow �i
�0�=0 �i

0,2	0 for i0� i� i1

Wake flow �i
�1�=0 �i

1,2	0 for i0� i� i1

Gulf streaming up �i
�2�=Di+

1
2vi, �i

�2�=Di−
1
2vi �i

2,l	0 for i0� i� i1
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three articles �7–9�, where all the details of the experimental
and analysis techniques are given. A more detailed discus-
sion of the analysis is given in Chapter 8 of Ref. �12�.

In Ref. �9� the motion of a single, radioactive particle was
followed in 3D. A macroporous anion exchange resin, Le-
watit MP500 was used, the physical properties of which are
given in Table II. In the table U is the superficial gas velocity
with which the powder was fluidized, and Umf that required
just to fluidize the powder; we use the word “superficial” to
mean the actual velocity of the interstitial gas multiplied by
the void fraction 
, of the bed. In another paper �8� pulses of
radioactive particles in a bed of fluidized catalytic cracking
�FCC� catalyst were followed. The properties of these par-
ticles are also given in Table II.

In both sets of experiments a bed vessel with an inner
diameter of 15 cm and a height of 35 cm was used. Analyses
showed �7,12� that the position of the particle could be de-
termined to within one cubic mm once per ms and the scatter
could be further reduced without loosing information about
the real movement of the particle by averaging the positional
data over about 20 ms. The paths of the particle are therefore
very accurately determined.

The motion of a tracer particle in a Cartesian coordinate
system with the origin in the center of the camera’s cylindri-
cal sensing zone and the y axis vertically upward is shown in
Fig. 5. The particle can be seen generally to rise faster than it
descends, consistent with quick rise associated with the
bubble phase and slower descent in the bulk. However, when
computing the expected bulk descent velocity under the
given operating conditions using relations for �a� the total
bubble flow, �b� the bubble size, and �c� the bubble velocity,
this expected descent velocity turns out to be much smaller
than the descent velocity seen in the figure. This indicates
that there is far more vertical transport than can be accounted
for by transport in bubble wakes alone. Figure 6 shows a plot
of the particle velocities measured over a cross section in the
middle of the bed.

This figure clearly shows that the particle circulates in the
bed, rising rapidly—but with a large spread in the

velocities—in one part of the bed and descending more
slowly in another part. This indicates “gulf streaming” �see
Fig. 1�. This effect is probably due to less-than-optimal gas
distribution in this laboratory bed. However, gulf streaming
is present in almost all large industrial beds, if not due to
inferior gas distribution over the cross section of the distribu-
tor, then due to the fluidization bubbles concentrating near
the axis as a consequence of coalescence.

Consistent with this we assume that the bed cross section
can be split in two regions: one with a strong bubble activity
and a generally upwardly directed particle flow, either in the
wakes of fluidization bubbles, or in the material between the
bubbles, and another with downward particle flow in which
the bubble activity is low or absent. Figure 7, wherein the
starting points of upward particle paths are shown, support
this view, and seems to indicate that the upward flow takes
up about 1/3 of the bed cross section.

Figure 8 shows a frequency plot for the particle velocities
shown in Fig. 6. Two local maxima at about −0.125 m /s and
+0.2 m /s are clear, and a few times the tracer particle can be
seen to have passed the middle with a velocity of +0.5–
+0.6 m /s. This leads us to assume the velocity of descent,
which we can already identify with v�0� from the previous
section, is about 0.125 m /s, and the velocity of ascent in the
bulk phase between the fluidization bubbles v�2� is 0.2 m /s
while the velocity of the bubble wakes, which follow the
fluidization bubbles v�1� may be 0.5−0.6 m /s. In chapter 8 of

TABLE II. Physical properties of the particles used

Lewatit MP500 FCC catalyst

Average particle size ��m� 470 79.5

Envelope density �kg /m3� 1060 1464

Sphericity �−� 1 0.9


mf 0.42 0.45

U 0.130 0.01

Umf measure �m /s� 0.116 0.004
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FIG. 5. Time series of the tracer particle’s y position �height in
bed�.
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FIG. 6. 3D plot of the particle velocities over a cross section in
the middle of the bed.
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FIG. 7. Starting points for upward particle paths in the bed. The
figure is redrawn from Ref. �9�. The cross-sectional region contain-
ing all the starting points is indicated by a broken line.
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Ref. �12� the data given in Ref. �9� are analyzed further to
show that these values are reasonable in light of what is
known about particle transport velocities in bubbling fluid-
ized beds.

D. Quantification of the model parameters

We now need to find the dimensionless velocity vi, dis-
persion coefficient Di, and phase transition rates �i

k,l to cal-
culate the transition probabilities according to the following
scheme:

�i
�k� = Di + 1

2vi, �i
�k� = Di − 1

2vi, �i
k,l = �̄i

k,l �1 � i

� N;k,l � �0,1,2�;k � l� .

The dimensionless phase transition rates �̄i
k,l are given as

�̄i
k,l = 
�̃i

k,l,

the physical transition rates �̃i
k,l having SI units of 1 /s. Thus

a particle in cell �i ,k� has a probability of 
�̃i
k,l to change

from its current phase k to phase l during a time period of
length 
.

To calculate the dimensionless velocities and dispersion
coefficients vi and Di from Eq. �3� we need to quantify the
spatial and the temporal discretization steps 	 and 
. We
obtain 	 as the quotient of height of the bed h and number of
cells N

	 =
h

N
.

Choosing 
=	 ensures a fine discretization and has the ad-
vantage that m /s converts to 	 /
 one to one. This results in
each time step having the length 
= h

N . The conversions be-
tween physical and dimensionless parameters are then, ac-
cording to Eq. �3�, obtained as

vi = ṽi



	
= ṽi

s

m

and

Di = D̃i



	2 = D̃i
N

h




	
= D̃i

N

h

s

m
.

In these equations, and hereinafter, the factor s /m denotes a
factor of unity, namely, 
 /	 with the SI unit s /m.

From Sec. II C and Fig. 8 we obtain for the velocities v�k�

corresponding to the three phases

v�0� = 0.125 m/s, v�1� = 0.577 m/s, v�2� = 0.2 m/s.

The dispersion is minimal in phases 1 and 2 and for phase 3
the following relation, developed in Dehling et al. �6� on
basis of the particle drift profiles measured by Tanimoto et
al. �16�:

Mean squared displacement = 2D̃ = 0.2089Db�1 − fw�1/3�U

− Umf�

with Db the bubble diameter and fw the wake fraction �see
Ref. �12��, gives

D̃�2� = 1.7 � 10−4 m2/s.

Based on the interpretation of Fig. 8 given above and in Ref.
�12� the transition rates from the downward bulk flow to the
upward gulf streaming flow and the upward flow in the
bubble wakes have a ratio of 0.2 to 0.0343. This gives

�i=i1

N
�i

0,1
�i,0�

�i=i1

N
�i

0,2
�i,0�
=

0.2

0.0343
, �6�

where 
�i ,k� denotes the invariant distribution of �Xn�n�0

evaluated for cell �i ,k�. Assuming the parameters �i
0,1 and

�i
0,2 to be constant for i� �i1 , . . . ,N� and using the fact that

the two transfer probabilities must sum to 1 simplifies Eq. �6�
to

�N
0,1 = 0.854, �N

0,2 = 0.146

for the bottom of the reactor, while

�i
0,1

�i
0,2 = 5.83

still has to hold for i1� i�N−1. It is worthwhile to note that
Eq. �6� becomes

�i=i1

N
�i

0,1

�i=i1

N
�i

0,2
=

0.2

0.0343

if 
 is the uniform distribution. Physical considerations,
namely the absence of segregation in the fluidized bed, lead
to the conclusion that the invariant �stationary� distribution is
given by the uniform distribution. This justifies the simplifi-
cation made above of Eq. �6� using the uniform distribution.

The height of the bed in fluidized state is 0.22 m. We
divide the bed in N=440 equisized cells yielding 	
=0.0005 m and 
=0.0005 s. The transition parameters for
exchange between the phases �i

k,l and the regions of ex-
change between gulf streaming and bulk delimited by i0 and
i1 are difficult to determine and those parameters not dis-
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FIG. 8. Frequency plot for the velocities shown in Fig. 6.
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cussed above, such as the values of i0 and i1, set as reason-
able fits. The resulting transition probabilities are

�i
�0� = 0 for all 2 � i � N ,

�i
�1� = ṽ�1� s

m
= 0.577 for all 2 � i � N ,

�i
�2� = 
N

h
D̃�2� −

1

2
ṽ�2�� s

m
= 0.44 for all 2 � i � N ,

�i
�0� = ṽ�0� s

m
= 0.125 for all 1 � i � N − 1,

�i
�1� = 0 for all 1 � i � N − 1,

�i
�2� = 
N

h
D̃�2� +

1

2
ṽ�2�� s

m
= 0.24 for all 1 � i � N − 1,

�i
0,1 = 0 for all 2 � i � i1 − 1,

�i
0,1 = 0.0007 for all i1 � i � N − 1,

�i
0,2 = 0.00075 for all 2 � i � i0,

�i
0,2 = 0.000078 for all i0 � i � i1,

�i
0,2 = 0.004 for all i1 � i � N − 1,

�i
1,0 = 0 for all 2 � i � N − 1,

�i
1,2 = 0 for all 2 � i � N − 1,

�i
2,0 = 0.005 for all 2 � i � i0,

�i
2,0 = 0.000061 for all i0 � i � i1,

�i
2,0 = 0 for all i1 � i � N − 1,

�i
2,1 = 0 for all 2 � i � N − 1,

�1
1,0 = 1,

�N
0,1 = 0.854,

�N
0,2 = 0.146,

�1
2,0 = 0.76,

with i0=80 and i1=400. All other transitions except for �i
k,k

are set to zero. The one-step return probabilities �i
k,k are cho-

sen in such a way that Eq. �2� holds. The high value of N is
due to the large variations in the dispersion coefficients and
the velocities and the requirement that all transition prob-

abilities must be nonnegative, i.e., here N
h D̃�2�− 1

2 ṽ�2��0.

III. MODEL VALIDATION WITH DATA

Using the model and data presented above, a simulation
of the path of a single particle starting in cell �N ,0� at the
bottom of the bed is computed for 42 s with MATLAB. This
simulation should be compared to the experimental results
shown in Fig. 5 �see Fig. 9�. Comparison of simulation and
experiment provides the following information.

The experimental results show 14 cycles, while the simu-
lation shows 16. The latter is consistent with expectation,
since the downward velocity used in the model is 0.125 m /s
and an averaged upward velocity is �0.146�0.577+0.854
�0.2� m /s=0.255 m /s, yielding a mean cycle time of
�0.22 /0.125+0.22 /0.255� s=2.62 s and a mean number of
cycles of 42 /2.62�16, disregarding any phase changes.

The maxima of 13 of the 14 passages in the experiment
lie in the upper 4 cm of the bed, while 11 of 14 minima are
in the lower 2 cm of the bed. For the simulations both counts
were 12 of 16.

There are four phase transitions changing from a down-
ward to an upward flow and two in the other direction in the
middle section of the reactor in the experiment. The simu-
lated path exhibits four changes from downward to upward
flow and one change from up-to downward flow. All other
phase changes take place in the upper 4 and lower 2 cm of
the bed. Also in this respect simulations and experiment are
consistent.

The simulated path is much straighter and sharper around
the extrema than the experimental one. This is no surprise,
since the velocities in the model are kept constant throughout
the whole reactor. Obviously they should be adjusted at top
and bottom regions to decrease in the neighborhoods of the
extrema.

In conclusion it can be said that the experimental and
simulation results agree very well. Qualitatively the simula-
tion captures all the essential features of the observed par-
ticle movement. Quantitatively simulation and experiment
agree closely although the velocities in the model are some-
what larger than those for the observed path. The simulation
still lacks minor characteristics. This could be expected, and
in some cases it was purposefully ignored in the effort to
keep the model simple. The most pressing issue is quantifi-
cation of the phase transition parameters.

A. Comparison with Pulses of Tracer Particles

In addition to the single-particle tracing pulses of radio-
active particles were followed in the FCC catalyst powder.
These experiments are discussed in detail by Dechsiri et al.

Time (ms)

FIG. 9. Time series of the tracer particle’s y position �height in
bed� according to the model; please compare with the experimental
results shown in Fig. 5.
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�8�, and we will compare them with predictions of the mul-
tiphase model here.

Figure 10 shows the dispersion a pulse of particles ini-
tially arranged in the middle of the bed. The time in seconds
is given under the images. After an initial slight rise seen at
2 s, due to the fluidization gas being turned on, it can be seen
how the main part of the layer moves down while being
slightly dispersed. This descent begins at 3 or 4 s, when the
fluidization bubbles “hit” the layer. Once the layer reaches
the bottom of the bed it is rapidly, and under significant
dispersion, brought to the top of the bed, again beginning a
descent. Careful scrutiny of the images shows that a smaller
part of the layer separates and initially moves up under
strong dispersion.

According the law of large numbers the probability distri-
bution for the position of one particle represents the way in
which a pulse of infinitely many particles will distribute in

the bed. Calculations of the vertical probability distribution
of a particle starting at the top of the bed using our model,
but with values for v and D fitted to these experiments, are
shown in Fig. 11.

The profiles in Fig. 11 were calculated by raising the tran-
sition matrix to a power defining the output time and multi-
plying the starting distribution vector from the left as shown
in Eq. �1�. Thus no simulations are involved here, only cal-
culation. This gives more exact results and a far lower
computer-processing time than when using simulations, e.g.,
Monte Carlo Markov chain methods.

The start of the calculations at time 0 s, should be com-
pared with the time at which the fluidization bubbles hit the
layer in the experiments, which is sometimes between 3 and
4 s. Figure 11 shows that the particles starting in the middle
of the reactor move either upward or downward in three
pulses. The by far largest pulse moves downward, the two

 ! " # $ % & ' (  )    !

FIG. 10. PET images showing
the spread of a pulse initially po-
sitioned in the middle of the fluid-
ized bed. The time in seconds is
given below the images. Details of
the experimental and analysis
method are given in Ref. �8�.
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FIG. 11. �Color online� Probability distribution for the particle’s vertical position at 1, 2, 3, and 4 seconds, reflecting the way a pulse of
particles will distribute over the bed with time.
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smaller ones upward. This is in accordance with the model
setup. The two smaller pulses are the particles already in the
wake phase and the upward gulf-streaming phase when the
simulation is started. The latter of these two, which is the
second-largest pulse moving upward less quickly, is equiva-
lent to the small upward-moving pulse seen �mainly to the
left in the bed� in the experiments.

The velocities agree with those seen in Fig. 10. The
downward movement of the pulse in the bulk is constant in
time and it needs about 3 s to reach the bottom, similarly to
what is seen in Fig. 11. Just over one second after the fluidi-
zation gas is turned on the upward moving, second-largest
pulse reaches the top of the bed, and the dispersion in this is
much faster than in the down-going one. This is also seen in
both the experimental and the modeling results.

In spite of all the common features in experimental and
model results mentioned above they differ slightly in that the
main pulse is dispersed much faster when brought to the top
in the model simulations than in the experiments. A consid-
erable amount of work remains, one important aspect is
quantifying the parameters for the phase transitions. More-
over Eq. �5� has not yet been used in the setup of the model
and should improve its quality when implemented.

IV. CONCLUDING REMARKS, THE ABSTRACT
MULTIPHASE SYSTEM

As is usual in stochastic modeling in process technology
the experimenter first has to identify the physical driving
forces and mechanisms, which must be considered when for-
mulating the model. Care has to be taken that the model
remains tractable while reflecting correctly the physical
mechanisms at work. The use of a multiphase system is in-
dicated if the evolution of the system �Xn�n�0 from one time
step n to the next n+1 �Xn→Xn+1� cannot be derived using
one parameter, i.e., state, alone but a �finite� number of these
must be considered, or if the object of interest may exist in
different states �chemical etc.�. After this has been done, two
crucial steps are the specification of the state space and the
transition probabilities.

The state space includes the information of interest, e.g.,
the particle’s spatial location or the number of particles in
some class. It also has to reflect that the transition probabili-
ties can only depend on the present state Xn and no other
states in the past. In the case of a multiphase system, infor-
mation about the aspect of interest does not suffice to gener-
ate a Markovian process, more information is required for
formulating a matrix of transition probabilities that depend
on the present state alone, i.e., one that can be computed with
the information at hand. Therefore the state space has to be
enlarged, beginning with the information of interest, until it
contains all information necessary to formulate a Markovian
process. In our case the information of interest is the parti-
cle’s spatial location, which is not enough to formulate the
transition probabilities, since we also need to know the phase
the particle occupies. We therefore have to enlarge the state
space to include information about the present phase to for-

mulate the transition probability matrix—and thus the Mar-
kovian process—on basis of the state alone.

Subsequently the transition probabilities have to be as-
signed. They determine the behavior of the system and con-
tinue the implementation of physical processes in the model.
The transition probabilities need to be consistent, i.e., greater
than 0 and summing up to 1. Particular attention should be
given to the transition probabilities between phases because
these do not exist in simpler models. For practical use quan-
tification of the model parameters, especially the transition
probabilities, which can be a difficult task, is of uttermost
importance. Qualitative knowledge about the system should
enter the choice of the transition parameters as well. One can
think of �local� mass balances or �known� long-time behav-
ior, e.g., knowledge of the invariant distribution.

Finally the theory of Markov chains can be applied with
full force using preliminary results. The transition matrix and
its iterates give predictions of the system after some time
steps when starting from an initial setup �Eq. �1��. Long time
behavior of the system can be deduced by considering the
eigenvalues and eigenvectors of the transition matrix. Resi-
dence time distributions are available when applying tech-
niques from Refs. �12,17�. In spite of us having shown a
number of simulations in this paper, it should not be forgot-
ten that information about Markov chain models can be ex-
actly computed via matrix manipulations which is more el-
egant and usually significantly faster and more convenient
than running simulations.

In spite of their potential for incorporating a huge variety
of physical processes, stochastic models depend on empirical
quantitative input, for instance, here about fluidization
bubble properties, the fraction of cross-sectional area taken
up by upward particle flow and the vertical velocities of par-
ticles. In spite of the physical processes being complex, and
perhaps even nonlinear �such as likely gulf streaming, which,
once initiated, is likely to be at least somewhat self-
amplifying� they can still be reflected in the transfer prob-
ability matrix once such quantitative information is avail-
able.

Purely physical simulations, such as “granular dynamics”
simulations, carry the promise of predicting all details of the
process without such quantitative input. However, the prac-
tical realization of this promise is quite far in the future, at
least for the type of process discussed here. Such simulations
are at present only possible with a very limited number of
particles, and the modeling of large fluidized bed is only
possible with “continuum models,” which also require input
from either experiment or small-scale simulations �18�.

Markov chain-based models are not necessarily stationary
�time-homogeneous�, the transition probability matrix may
vary in time. Further development of more advanced models
wherein the transfer probability matrix varies, possibly in
response to variations in the position probability vector, may
provide the means to incorporate some of the complex ef-
fects mentioned above, reducing the need for quantitative
input to stochastic models.
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